

Intel PROSet For

Windows* Device Manager

WMI Provider User‟s Guide

White Paper
Revision 1.8

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

2

Contents

Introduction ... 3

Technology Overview .. 4

Web-based Enterprise Management .. 4
Windows Management Instrumentation ... 4
Installed Files ... 6
Namespaces ... 7
Locales and Localization .. 7
WBEM Context .. 8
Error Reporting .. 9

Classes ... 10

Class List .. 10

Appendix .. 38

Related Documents.. 38
Terminology.. 38
Working Examples .. 38
Updating the Configuration ... 40
Changing Settings ... 41
Working with Teams .. 42
Working with VLANs ... 43
Running Diagnostics .. 44
iSCSI Settings.. 45
Errata ... 47

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

3

Introduction

Intel® PROSet for Windows* Device Manager deploys Network Configuration Services version 2.0, an easy to use solution

for deploying and managing all Intel end-station networking technologies using industry standard methods. The NCS2

architecture works closely with the Windows Management Instrumentation (WMI) service to provide remote management of

Intel network devices. This document describes the WMI classes and providers supplied by Intel® PROSet for Windows*

Device Manager.

This document is divided into several sections

 Technology overview – an overview of WMI technology.

 Class summaries – the class and namespace details for the NCS2 architecture.

 Working examples – how to use the NCS2 architecture to manage Intel® network devices.

 Errata – additional information specific to some environments.

Intel® PROSet for Windows*Device Manager WMI providers offer the following features.

Category Features

Adapter Enumerate all supported physical network adapters

Update settings for an adapter

Obtain an adapter‟s physical device information

Monitor adapter link

Uninstall an adapter driver

Query IPv4 and IPv6 adapter addresses

Boot Change an adapter‟s boot agent settings

View and modify adapter iSCSI settings

Diagnostics Enumerate diagnostic tests, settings, and results

Run or stop a diagnostic test on an installed adapter

Team Enumerate supported team types

Create or remove a team of adapters

Update team settings

Add or remove team member adapters

Change team member priorities

Obtain the IPv4 protocol settings for a team

VLAN Create, discover, or remove Virtual LANs on an adapter or team

Update VLAN settings

Obtain the IPv4 protocol settings for a VLAN

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

4

Technology Overview
This section offers an overview of Windows Management Instrumentation in Microsoft operating systems and is

recommended for anyone not familiar with the architecture. Further reading on this topic is encouraged and additional are

links are provided at the end of this section.

Web-based Enterprise Management

Web-based Enterprise Management (WBEM) is a Distributed Management Task Force (DMTF) initiative providing enterprise

system managers with a standardized, cost-effective method for end station management. The WBEM initiative

encompasses a multitude of tasks, ranging from simple workstation configuration to full-scale enterprise management

across multiple platforms. Central to the initiative is the Common Information Model (CIM), an extensible data model

representing objects in typical management environments, and the Managed Object Format (MOF) language for defining and

storing modeled data.

Windows Management Instrumentation

Windows Management Instrumentation (WMI) is the Microsoft implementation of WBEM for Windows* operating systems. It

exposes a programmable interface to view and interact with management objects. Running as a system service, this

operating system component offers many powerful capabilities.

WMI consists of the following components:

 Management applications

 Managed objects

 Providers

 Management infrastructure

 A COM API to allow access to management information.

Management applications process or display data from managed objects, which are logical or physical enterprise

components. These components are modeled using CIM and accessed by applications through Windows Management

Services. Providers supply Windows Management with data from managed objects, handle requests from applications and

notification of events. The providers for Intel® PROSet for Windows* Device Manager play a central role in network card

configuration management.

Windows management consists of the CIM Object Manager (for handling the communication between management

applications and providers) and a central storage area (CIMOM object repository). Data is placed in the repository using

either the MOF language compiler or the Windows Management API.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

5

The following diagram shows the interrelationship of these components:

Figure 1 – Windows Management Architecture

Common Information Model

The Common Information Model (CIM) presents a consistent and unified view of all types of logical and physical objects in a

managed environment. Managed objects are represented as classes. CIM was designed by the DMTF to be operating system

and platform independent, but the Microsoft implementation pre-dominates the specification. WBEM technology includes an

extension of CIM for Microsoft Windows* operating system platforms. Please refer to the DMTF CIM schema on the DMTF

web site for more information. Intel® PROSet for Windows* Device Manager is based on CIM Schema version 2.6.

CIM defines three levels of classes:

 Classes representing managed objects that apply to all areas of management. These classes provide a basic

vocabulary for analyzing and describing managed systems and are part of what is referred to as the “core

model.”

 Classes representing managed objects that apply to a specific management area but are independent of a

particular implementation or technology. These classes are part of what is referred to as the common model -

an extension of the core model.

 Classes representing managed objects that are technology-specific additions to the common model. These

classes typically apply to specific platforms such as UNIX or the Microsoft Win32 environment.

Inheritance Relationships

Classes can be related by inheritance, where a child class includes data and methods from its parent. Inheritance

relationships are not typically visible to the management application using them, nor are the applications required to know

the inheritance hierarchy. Class hierarchies can be viewed with CIM repository viewers. Since the NCS2 architecture uses

inheritance, it is important to understand the limits and capabilities of these relationships.

Association Classes

Windows Management also supports association classes. Association classes link two different classes to model a user-

defined relationship, and are visible to management applications. Third-party developers can also define association classes

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

6

for their management environment. Associations represent a relationship between two WMI objects (classes). The

properties of the association class include two pointers or references, each linking to a different instance. The relationships

are maintained by path only; the association class does not have the capability to modify the instances it links. For additional

information on CIM, visit http://www.dmtf.org

CIM Tools

There are many ways to interact with a CIM repository depending on which operating system the user has installed. These

tools are best used to view CIM information; scripting and programming languages are recommended for configuration

changes.

Tool Explanation

Wbemtest Native support on any Windows* operating system where WMI has been installed.

CIM Studio Browser based implementation of WBEMTest.exe and much easier to use. However, it requires download and install

an additional program. To locate this tool, search for “WMI Administrative Tools” on Microsoft‟s web site

(www.microsoft.com).

Windows

Powershell

Optional shell environment which offers powerful scripting capabilities and provides easy access to WMI

namespaces through simple queries.

WMIC Windows Management Instrumentation Command-line. A command line interface to WMI namespaces.

Installed Files

Executables

When information is requested about Intel® PROSet for Windows* Device Manager through a WMI service call, the NCS2

provider will be launched. This will be visible as a running process in the operating system. Start and shutdown of WMI

providers is completely transparent to user; there is no need to directly manipulate them. After a period of inactivity, the

NCS2 provider will unload itself (usually a few minutes).

Filename Description

Ncs2Prov.exe Intel® PROSet for Windows* Device Manager WMI provider.

Dynamically Linked Libraries

The following dynamically linked libraries are used by Intel® PROSet for Windows* Device Manager.

Filename Description

Ncs2Core.dll Implements the Ethernet Adapter Schema.

Ncs2Diag.dll Implements the Diagnostics Schema.

Ncs2Boot.dll Implements the Boot Agent Schema.

Ncs2Team.dll Implements the Team Schema.

Ncs2VLAN.dll Implements the VLAN Schema.

MOF Files

A “MOF” file is a Managed Object Format file which contains information about WMI classes. A set of basic MOF files are

included on distribution media for reference only. There are separate MOF files for language neutral and language specific

data, which become available upon installation. The following are .mof files for the „root\IntelNCS2‟ namespace.

Filename Description

ICmLn.mof CIM base classes on which the NCS2 classes depend.

ICmEnu.mfl US English version of the CIM base classes.

ICoreLn.mof Classes for the IEEE 802.3 adapters.

http://www.dmtf.org/
http://www.microsoft.com/

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

7

ICoreEnu.mfl US English textual amendments to the adapter classes.

IBootLn.mof Classes for the IEEE 802.3 boot service

IBootEnu.mfl US English textual amendments to the 802.3 boot service classes.

IDiagLn.mof Classes for the CDM (Common Diagnostic Model).

IDiagEnu.mfl US English textual amendments to the CDM classes.

ITeamLn.mof Classes for the IEEE 802.3 teams.

ITeamEnu.mfl US English textual amendments to the team classes.

IVLANLn.mof Classes for the IEEE 802.3 VLANs.

IVLANEnu.mfl US English textual amendments to the VLAN classes.

Security

The NCS2 WMI provider uses client impersonation to manage the security; every call will be made in the client‟s own

security context. This context is passed down to the lower layers. An operation may fail if the user does not have suitable

administrative rights on the target machine. Please see Permissions for more information.

Namespaces

CIM classes are organized into namespaces, a logical partitioning of the CIM object management repository. Installation of

Intel® PROSet for Windows* Device Manager will create the namespace “root\IntelNCS2” The NCS2 architecture uses this

namespace to organize management information and make it available to clients. This namespace is only visible when

PROSet has been installed and will be removed upon product uninstall.

root\IntelNCS2

The root\IntelNCS2 namespace contains information about Intel® PROSet for Windows* Device Manager and is based on CIM

version 2.6. The root\CIMv2 namespace was not used as a primary because it is based on CIM version 2.2 and has object

key differences. Classes in this namespace have been extended through class inheritance to contain information specific to

the NCS2 architecture. All operations regarding adapters, teams, VLANs, boot agent settings, and diagnostics must interact

with this namespace.

Locales and Localization

Localized MOF files

All the MOF files used by the NCS2 WMI Provider are localized according to the Microsoft Windows Management

Instrumentation globalization model. To accomplish this, each class definition is separated into the following:

 a language-neutral version that contains only the basic class definition in the .mof file.

 a language-specific version that contains localized information, such as property descriptions that are specific

to a locale in the corresponding .mfl file.

Class Storage

The language-specific class definitions are stored in a child sub-namespace beneath the namespace that contains a

language-neutral basic class definition. For example, for the NCS2 WMI Provider, a child namespace ms_409 will exist

beneath the root/IntelNCS2 namespace for the English locale. Similarly, there exists a child sub-namespace for each

supported language beneath the root/IntelNCS2 namespace.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

8

Runtime Support

To retrieve localized data, a WMI application can specify the locale using strLocale parameter in

SWbemLocator::ConnectServer and IWbemLocator::ConnectServer calls. If the locale is not specified, the default locale for

that system will be used. (e.g. MS_409 for US English). This locale is used to select the correct namespace when adding in

the English strings. In addition, IWbemServices::GetObject, SWbemServices.GetObject, IWbemServices:: ExecQuery, and

SWbemServices.ExecQuery must specify the WBEM_FLAG_USER_AMENDED_ QUALIFIERS flag to request localized data

stored in the localized namespace, along with the basic definition. This is required in all functions that produce displayable

values using value maps or display descriptions or other amended qualifiers from the MOF files.

WBEM Context

IWbemContext is a WMI programming interface which allows users to optionally communicate additional parameters to

providers when submitting function calls. If you plan on making any changes to the NCS2 configuration through a WMI call,

then you must pass a WbemContext parameter. These optional parameters are constructed by the user and passed as part

of a WbemServices call. Interaction with NCS2 is dependent upon WbemContext objects when modify operations are

requested. Thus, any request to NCS2 for a configuration change requires a WbemContext object to be constructed by the

user and passed in the WbemServices function call. The following table contains the context qualifiers (named values) used

by the NCS2 Provider.

Context Qualifier Variant Type Description

ClientSetId VT_BSTR A client handle allows the NCS2 software to manage single access to the

configuration. The application cannot make any changes to classes without first

establishing this; see the section on the IANet_NetService class to see how to

establish and use a client handle.

MachineName VT_BSTR The name of the machine that is connecting to the IntelNCS2 provider. This is

required for logging.

Use Cases

A session handle is required to change a configuration and is managed through the root\IntelNCS2 namespace classes. This

identification number allows the NCS2 software to manage single access to the configuration, thereby preventing changes

from more than one source at a time. Understanding the role of these client handles is crucial for successful management

changes.

Getting a Client Handle

The client must get the object path of the single instance of IANet_NetService before accessing the client handle. There will

only be one instance of this class. Before making any changes to the configuration, the client must get a client handle

provided by this class through the BeginApply () method. Use this method to obtain a numeric lock ID which will

authenticate access requests. Client handles are random numbers generated new each time they are requested. This lock

will remain in place until the Apply () method is called or the provider unloads itself from inactivity. Client handles are only

required during operation which make a configuration change.

Using a Client Handle in the IWbemContext Object

After the client handle is obtained, a WbemContext object has to be created. Store the client handle in the ClientSetId

qualifier of this object. A pointer to this COM object should be passed to every call into IWbemServices. The client handle is

not required when making calls to access the IANet_NetService object as this takes the handle as an explicit argument. By

passing the client handle as an argument with the method, the software stack can identify the source of the request. Since

the client handle is a number, it can be treated as such for assignment purposes.

Finishing with a Client Handle

After changing the configuration, call the IANet_NetService::Apply () method to commit the changes. The client handle ID is

passed as an argument to the Apply () method. This may return a follow-up action code (e.g., reboot the system before the

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

9

changes can take effect). If any devices became disabled during change operations, committing an Apply () method will

enable them.

Error Reporting

This section details how to handle errors generated by the NCS2 provider. How and when an error object is returned

depends on whether a call is synchronous, semi-synchronous or asynchronous. In most cases, the HRESULT is set to

WBEM_E_FAILED when an error occurs. At this point, however, it is unknown whether WMI or a NCS2 Provider generated

the error.

Getting the Error Object

Synchronous Calls

Use GetErrorInfo () to get the IErrorInfo object. Use QueryInterface () to get the IWbemClassObject that contains the error

information.

Asynchronous Calls

The IWbemClassObject is passed back as the last item in the last SetStatus () call. After you get the error object instance,

you can check the __Class property to determine the origin of the error. WMI creates an instance of __ExtendedStatus, and

the NCS2 WMI Provider creates an instance of IANet_ExtendedStatus for errors relating to IANet_ classes and NCS2 WMI

Provider. IANet_ExtendedStatus is derived from __ExtendedStatus and contains the following attributes:

Error Codes

For all error codes, the NCS2 provider gives a description customized to the locale. Error codes are in the form of HRESULT

with severity set to one (1) and facility set to ITF. An application may use these codes as a basis for a recovery action. See

IANet_ExtendedStatus for a list of error codes.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

10

Classes
The following classes are used by Intel® PROSet for Windows* Device Manager and are located in the root\IntelNCS2

namespace.

Class List

IANet_DiagTestForMSE

IANet_EthernetAdapter

IANet_ExtendedStatus

IANet_LogicalEthernetAdapter

IANet_NetService

IANet_NetworkVirtualAdapter

IANet_PhysicalEthernetAdapter

IANet_Setting

IANet_TeamedMemberAdapter

IANet_TeamOfAdapters

IANet_TeamSetting

IANet_TeamSettingEnum

IANet_TeamSettingInt

IANet_TeamSettingMultiSelection

IANet_TeamSettingSlider

IANet_TeamSettingString

IANet_TeamToTeamSettingAssoc

IANet_VLAN

IANet_VLANFor

IANet_VLANSetting

IANet_VLANSettingEnum

IANet_VLANSettingInt

IANet_VLANSettingMultiSelection

IANet_VLANSettingSlider

IANet_VLANSettingString

IANet_VLANToVLANSettingAssoc

IANet_802dot1QVLANService

IANet_AdapterSetting

IANet_AdapterSettingEnum

IANet_AdapterSettingInt

IANet_AdapterSettingMultiSelection

IANet_AdapterSettingMultiString

IANet_AdapterSettingSlider

IANet_AdapterSettingString

IANet_AdapterToSettingAssoc

IANet_BootAgent

IANet_BootAgent_iSCSI_Adapters

IANet_BootAgentSetting

IANet_BootAgentSettingEnum

IANet_BootAgentSettingInt

IANet_BootAgentSettingString

IANet_BootAgentToBootAgentSettingAssoc

IANet_Device802dot1QVLANServiceImplementation

IANet_DeviceBootServiceImplementation

IANet_DiagConnectionResultStrings

IANet_DiagResult

IANet_DiagResultForMSE

IANet_DiagResultForTest

IANet_DiagResultInPackage

IANet_DiagSetting

IANet_DiagSettingForTest

IANet_DiagTest

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

11

IANet_802dot1QVLANService

This class is used to hold the IEEE 802.1Q properties of a network adapter. This class implements the CIM class

CIM_802dot1QVLANService.

Instances

An instance of this class exists for each adapter or team that supports IEEE 802.1Q. Each adapter or team can have just one

IANet_802dot1QVLANService. Some teams, such as multi-vendor fault tolerant teams do not support this service. The user cannot

create instances of this class If the adapter does not have an instance associated with it, then the adapter does not support this

service. The user cannot delete instances of this class.

Properties

There are no supported or modifiable properties.

Methods

Method Returns Parameters Detail

CreateVLAN uint16 [in] uint32 VLANNumber

[in] string Name

[out] ref:IANet_VLAN

Used to create a VLAN on the adapter or team.

The client must supply the VLAN number and

the VLAN name, and will get the object path of

the newly created VLAN.

Associations

IANet_Device802dot1QVLANServiceImplementation

IANet_AdapterSetting

This abstract class is used to describe a settable property in a configuration. The class is derived from IANet_Setting. Instances of

this class will exist for each setting on each adapter. There are several sub-classes for IANet_AdapterSetting. The sub-classes

correspond to the different types and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI

that may be used to display or change the settings.

Instances

There will be one instance for every class which inherits this one; a single instance for every type of adapter setting.

Properties

See class IANet_Setting for supported properties.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_AdapterSettingInt

The class models a setting that takes an integer value. There are several IANet setting classes used to model integers. The

differences between these classes concerns how the integer is displayed and modified by the user interface and how validation is

done by the NCS2 WMI Provider. For IANet_AdapterSettingInt, it is expected that the user interface will display an edit box with a

spin control.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box. Users can neither create nor remove

instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

base uint64 Base is the root from which an integer value may take values.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

12

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

Scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to measure value

of the parameter.

step sint64 Granularity of the integer value.

Modifiable properties: CurrentValue must be within the range of .min and .max.

Methods

There are no supported methods.

Associations

Inherits an association with IANet_PhysicalEthernetAdapter through IANet_AdapterToSettingAssoc.

IANet_AdapterSettingEnum

The class models an enumeration setting value. For IANet_AdapterSettingEnum, it is expected that the user interface will display a

list of strings which map onto a small number of enumerated values. (e.g., a drop list, combo box).

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

DescriptionMap [] string Contains what each value means

PossibleValues [] sint64 An array of possible values allowed for the enum.

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_PhysicalEthernetAdapter through IANet_AdapterToSettingAssoc.

IANet_AdapterSettingMultiString

The class objectifies adapter related driver and network device settings; specifically, it handles multi-string settings.

Instances

An instance of this class exists for each setting that will be as a list of string values. Users can neither create nor remove instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

Maxlength uint32 The maximum length of the string.

Modifiable properties: CurrentValue

Methods

There are no supported methods.

Associations

Inherits an association with IANet_PhysicalEthernetAdapter through IANet_AdapterToSettingAssoc.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

13

IANet_AdapterSettingMultiSelection

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box which will allow the user to

choose any (or no) option(s).

Instances

An instance of this class exists for each setting that should be displayed as a list of options.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_PhysicalEthernetAdapter through IANet_AdapterToSettingAssoc.

IANet_AdapterSettingString

This class models a setting whereby the user can enter a free-form string value. For IANet_AdapterSettingString, it is expected that

the user interface will display an edit box.

Instances

An instance of this class exists for each setting that should be displayed as a string.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

MaxLength uint32 The maximum length of the string.

Modifiable properties: CurrentValue

Methods

There are no supported methods.

Associations

Inherits an association with IANet_PhysicalEthernetAdapter through IANet_AdapterToSettingAssoc.

IANet_AdapterSettingSlider

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is expected that the user

interface will display a slider which will allow the user to choose the value in a graphical manner – the actual value chosen need not

be displayed.

Instances

An instance of this class exists for each setting that will be displayed as a slider. Users can neither create nor remove instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

14

PossibleValues [] sint64 The initial value of the parameter.

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_PhysicalEthernetAdapter through IANet_AdapterToSettingAssoc.

IANet_AdapterToSettingAssoc

This is an association class between an instance of IANet_PhysicalEthernetAdapter and IANet_AdapterSetting.

Instances

There will be one instance of this class for every adapter setting on an adapter.

Properties

Name Type Description

Element ref Reference to IANet_PhysicalEthernetAdapter

Setting ref Reference to IANet_AdapterSetting

IANet_BootAgent

This class is used to capture information about the network boot capabilities of an adapter (e.g., settings for the PXE Boot Agent

supported by some Intel adapters).

Instances

An instance exists for each adapter that supports boot agent capabilities, even if the boot agent is not currently installed. Users can

neither create nor remove instances.

Properties

There are no other supported properties.

Modifiable properties: none

Name Type Description Values

FlashImageType uint32 Boot Agent Flash Image type. 0 PXE

1 PXE_EFI

3 EFI

4 DISABLED

5 BLANK

6 MISSING

7 iSCSI

255 Unknown

InstalledFlashImageTypes uint32 Boot Agent flash image types that

are currently installed in the ROM.
1 PXE

2 EFI

4 ISCSI

255 Unknown

InvalidImageSignature boolean Will be set to true if the boot agent has a corrupted flash image.

iSCSI_Status uint32 Boot Agent iSCSI status. 0 iSCSI_PRIMARY

1 iSCSI_SECONDARY

2 iSCSI_DISABLED

255 Unknown

UpdateAvailable boolean Indicates if install or upgrade to boot agent software is available.

Version string String describing boot agent version.

VersionNumber uint32 Boot agent version in the format x.x.x

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

15

Methods

There are two methods on this class that can be used to update the Flash ROM on the NIC:

Method Returns Parameters Detail

ProgramFlash uint32 [IN] uint32 Action

[IN] array of uint8 NewFlashData

[OUT] uint32 FlashRetCode

This method is used to update the Flash ROM on the NIC.

This will cause the NIC to stop communicating with the

network while the flash is updated.

 ReadFlash uint32 [OUT] array of uint8 FlashData This method reads the Flash ROM on the NIC.

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgentSetting

IANet_DeviceBootServiceImplementation IANet_PhysicalEthernetAdapter

IANet_BootAgent_iSCSI_Adapters

This class is used to capture information about iSCSI supported adapters installed in the system.

Instances

There will be one instance of each adapter which supports iSCSI boot. Users can neither create nor remove instances.

Properties

There are no other supported properties.

Modifiable properties: none

Methods

There is one method of this class which can be used to set the iSCSI priority of adapters:

Method Returns Parameters Detail

SetiSCSI_Status uint32 [IN] uint32 iSCSI_State

[OUT] uint32 RetCode

This method will update the status of adapters that support iSCSI Boot.

The function only takes the primary and secondary adapter IDs and

sets them accordingly. The remaining adapters are set to disabled.

iSCSI_State

0 Set adapter to Primary

1 Set adapter to Secondary

2 Set adapter to Disabled

RetCode

0 The state change was successful

1 The state change failed

Associations

There are no associations.

Name Type Description Values

AdapterName string Friendly name of the adapter.

Caption This is an inherited property; refer to parent class CIM definition.

iSCSI_Status uint32 The boot agent iSCSI status. 0 iSCSI_PRIMARY

1 iSCSI_SECONDARY

2 iSCSI_DISABLED

255 Unknown

Name This is an inherited property; refer to parent class CIM definition.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

16

IANet_BootAgentSetting

This abstract class is used to describe a settable property in a configuration. The class is derived from IANet_Setting. Instances will

exist for each Boot Agent setting. There are several sub-classes for IANet_BootAgentSetting which correspond to the different

types and ranges of values that settings can take.

Instances

There will be one instance for every class which inherits this one; a single instance for every type of adapter boot setting.

Properties

See class IANet_Setting for supported properties.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_BootAgentToBootAgentSettingAssoc IANet_BootAgent

IANet_BootAgentSettingEnum

The class models an enumeration setting value.

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

DescriptionMap [] string Contains what each value means.

PossibleValues [] sint64 An array of possible values allowed for the Enum.

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_BootAgent through IANet_BootAgentToBootAgentSettingAssoc

IANet_BootAgentSettingInt

This class objectifies Boot Agent related driver and network device settings. IANet_BootAgentSettingInt specifically handles Integer

settings.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box. Users can neither create nor remove

instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

base uint64 Base is the root from which an integer value may take values.

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to

measure value of the parameter.

step sint64 Granularity of the integer value.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

17

Modifiable properties: CurrentValue. Must be within the range of .min and .max.

Methods

There are no supported methods.

Associations

Inherits an association with IANet_BootAgent through IANet_BootAgentToBootAgentSettingAssoc

IANet_BootAgentSettingString

This class objectifies Boot Agent related driver and network device settings. IANet_BootAgentSettingString specifically handles

Integer settings

Instances

An instance of this class exists for each boot agent setting that should be displayed as string. Users can neither create nor remove

instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

MaxLength uint32 The maximum length of the string.

Modifiable properties: CurrentValue

Methods

There are no supported methods.

Associations

Inherits an association with IANet_BootAgent through IANet_BootAgentToBootAgentSettingAssoc

IANet_BootAgentToBootAgentSettingAssoc

This is an association class between an instance of IANet_BootAgent and IANet_BootAgentSetting.

Instances

There will be one instance of this class for every adapter which supports boot agent configuration.

Properties

Name Type Description

Element ref Reference to IANet_BootAgent

Setting ref Reference to IANet_BootAgentSetting

IANet_Device802dot1QVLANServiceImplementation

This is an association class between an instance of IANet_PhysicalEthernetAdapter and IANet_802dot1QVLANService.

Instances

There will be one instance of this class for every VLAN attached to an adapter. Users can neither create nor remove instances.

Properties

Name Type Description

Antecedent ref Reference to IANet_PhysicalEthernetAdapter

Dependent ref Reference to IANet_802dot1QVLANService

IANet_DeviceBootServiceImplementation

This is an association class between an instance of IANet_PhysicalEthernetAdapter and IANet_BootAgent.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

18

Instances

There will be once instance of this class for every adapter which has a boot agent.

Properties

Name Type Description

Antecedent ref Reference to IANet_PhysicalEthernetAdapter

Dependent ref Reference to IANet_BootAgent

IANet_DiagConnectionResultStrings

This is a class used internally to store strings related to diagnostic connection results. These strings are storied in this class so they

can be localized. There are no instances of this class.

IANet_DiagResult

Instances of IANet_DiagResult display result data for a particular test run on a particular Adapter. Instances of this class correspond

identically to instances of IANet_DiagTest and IANet_DiagSetting.

Instances

When a diagnostic test is executed, instances of this class are created to hold the results. If the same diagnostic is executed again,

previous instances will be replaced. Instances will persist as long as the provider is actively running; after the provider is shut down,

all instances of this class will be cleared. The user cannot create instances or delete instances of this class.

For some diagnostic tests, the results are „packaged‟ as a set of results. In these cases, there will be a single parent result class

instance associated to each packaged result through the IANet_DiagResultInPackage association. Thus, it is possible to execute a

single diagnostic test but have multiple results displayed.

Properties

Name Type Description Values

Grouped boolean Some of the tests are grouped under specific categories. Grouped is true if this is

the case.

GroupId uint16 Some of the tests are grouped under specific categories. This parameter specifies

the ID of the group under which this test belongs.

Description string Description of the test and its purpose. . Not all diagnostic tests have support for

this parameter.

Name string This is an inherited property; refer to parent class CIM definition.

PackageName string Denotes the name of the parent package, if it exists.

Result string A description of the result. Not all diagnostic tests have support for this

parameter.

ResultCode uint16 An additional code used to describe the type of result. Not all diagnostic tests have

support for this parameter.

TestCompletionTime datetime This is an inherited property; refer to parent class CIM definition.

TimeStamp datetime This is an inherited property; refer to parent class CIM definition.

TestState uint16 This is an inherited property; refer to parent class CIM definition.

Title string Name of the test. Not all diagnostic tests have support for this parameter.

There are no other supported properties.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_DiagResultForTest IANet_DiagTest

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

19

IANet_DiagResultForMSE IANet_PhysicalEthernetAdapter

IANet_DiagResultInPackage

This is an association class between an instance of an IANet_DiagResult and another IANet_DiagResult. It is used to correlate a

single diagnostic result with a parent result, creating a packaged grouping between a single diagnostic result and additional results

for that test.

Instances

There will be on instance of this class for every result which is packaged within a parent IANet_DiagResult instance.

Properties

Name Type Description

PackageResult ref Reference to IANet_DiagResult

Result ref Reference to IANet_DiagResult

IANet_DiagResultForMSE

This class relates diagnostic test results to the ManagedSystemElement that was tested.

Instances

There will be one instance of this class for every diagnostic result. Diagnostic tests must be executed before instances of this class

will exist.

Properties

Name Type Description

Antecedent ref Reference to IANet_DiagTest

Dependent ref Reference to IANet_PhysicalEthernetAdapter

IANet_DiagResultForTest

This is an association class between an instance of IANet_DiagResult and IANet_DiagTest

Instances

There will be once instance of this class for every diagnostic which has been executed.

Properties

Name Type Description

DiagnosticResult ref Reference to IANet_DiagResult

DiagnosticTest ref Reference to IANet_DiagTest

IANet_DiagSetting

Instances of IANet_DiagSetting provide specific run time diagnostic test directives. Directives used are in common to all tests and

are bound to the super class CIM_DiagnosticSetting. These include properties such as ReportSoftErrors and HaltOnError. There are

no additional properties added to the subclass IANet_DiagSetting.

Instances

The user cannot create instances or delete instances of this class. There will be one instance for each adapter and test combination.

Properties

Name Type Description

HaltOnError boolean This is an inherited property; refer to parent class CIM definition.

PercentOfTestCoverage unit8 This is an inherited property; refer to parent class CIM definition.

QuickMode boolean This is an inherited property; refer to parent class CIM definition.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

20

ReportSoftErrors boolean This is an inherited property; refer to parent class CIM definition.

ReportStatusMessages boolean This is an inherited property; refer to parent class CIM definition.

TestWarningLevel uint16 This is an inherited property; refer to parent class CIM definition.

There are no other supported properties.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_DiagSettingForTest IANet_DiagTest

IANet_DiagSettingForTest

This is an association class between an instance of IANet_DiagTest and IANet_DiagSetting.

Instances

There will be once instance of this class for every diagnostic test and setting for that test.

Properties

Name Type Description

Element ref Reference to IANet_DiagTest

Setting ref Reference to IANet_DiagSetting

IANet_DiagTest

IANet_DiagTest is sub classed from CIM_DiagnosticTest. The class provides a generic vehicle to run and control Diagnostic tests for

a supported Ethernet adapter. The super class, CIM_DiagnosticTest, is designed to generically support the testing of any computer

hardware on a CIM enabled system. Properties of the class are descriptive in nature and the mechanics of the testing are provided

by the exposed methods.

Instances

There is a one to one relationship between available diagnostic tests and instances of this class. Each test is distinguished by a key,

which is the concatenation of a diagnostic ID number, the “@” symbol, and the GUID of the referenced adapter (e.g. 1@{12345678-

9ABC-DEF0-1234-123456789012}). These unique strings will appear in the “Name” parameter of these class instances. This key

value is, in one sense, redundant information, as all information to reference an adapter and test is passed as object parameters to

the RunTest and other methods. Still, the instance must be consistent with parameters to the method or the NCS2 WMI Providers

will reject the command. Other properties provide other description and run time information. The user cannot create or delete

instances of this class.

The following table contains the diagnostic IDs which comprise the “<ID>@” part of the string. You can select which test to run on an

adapter by choosing an ID from the table below and pairing it with the GUID of an adapter.

Diagnostic ID Test Type

1 EEPROM

2 FIFO

3 REGISTER

4 INTERRUPT

17 LOOPBACK

18 EXTENDED LOOPBACK

Diagnostic ID Test Type

32 LINK & DUPLEX ONLINE

33 LINK & DUPLEX OFFLINE

34 CABLE ONLINE

35 CABLE OFFLINE

36 PING

37 CONNECTION*

The Connection test (37) encompasses both the Ping test (36) and the Online Link & Duplex test (32).

Properties

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

21

Name Type Description Values

Characteristics [] uint16 This is an inherited property; refer to parent class CIM definition.

Grouped boolean Some of the tests are grouped under specific categories. Grouped is true if this is the

case.

GroupId uint16 Some of the tests are grouped under specific categories. This parameter specifies the ID

of the group under which this test belongs.

Name string This is an inherited property; refer to parent class CIM definition.

TestId uint16 The test ID of the diagnostic test.

No other properties are supported.

Methods

Method Returns Parameters Detail

RunTest uint32 [IN] ref : CIM_ManagedSystemElement

SystemElement

[IN] ref :

CIM_DiagnosticSetting

Setting

[OUT] ref :

CIM_DiagnosticResult

Result

Runs a test as defined by three parameters

referencing:

SystemElement

defines the adapter, which we are to run the test

on by referring to an instance of SystemElement,

which will always be the subclass

IANet_EthernetAdapter.

Setting

defines the test to be run, and the manner in which

it is run by referring to an instance of

CIM_DiagnosticSetting, which will always be the

subclass IANet_DiagSetting.

Result

defines an instance of the class

CIM_DiagnosticResult, which will always be the

class IANet_DiagResult.

DiscontinueTest [IN] ref : CIM_ManagedSystemElement

SystemElement

[IN] ref :

CIM_DiagnosticResult

Result

[OUT] Boolean TestingStopped

Attempts to stop a diagnostic test in progress as

defined by two parameters referencing

SystemElement and Result. These parameters

function the same as RunTest. A third parameter

TestingStopped returns a BOOLEAN value, which

indicates if the command was successful in

stopping the test.

ClearResults [IN] ref : CIM_ManagedSystemElement

SystemElement

[OUT] [] String

ResultsNotCleared

The referenced parameter

ManagedSystemElement, combined with this

object‟s object path combine to reference instances

of DiagnosticResultForMSE, which will be deleted.

Also, all references of DiagnosticResult objects

referenced by DiagnosticResultForMSE will be

deleted. Also, all instances of Diagnostic-

ResultForTest, which refer to the deleted

DiagnosticResult objects, will be deleted. Finally,

the string array Output parameter

ResultsNotCleared will list the keys of the

DiagnosticResults, which could not be cleared.

There are no other supported methods

Associations

Association Class Association Partner

IANet_DiagTestForTest IANet_DiagResult

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

22

IANet_DiagSettingForTest IANet_DiagSetting

IANet_DiagTestForMSE IANet_PhysicalEthernetAdapter

IANet_DiagTestForMSE

This is an association class between an instance of a CIM_DiagnosticTest and CIM_ManagedSystemElement.

Instances

There will be once instance of this class for every diagnostic test.

Properties

Name Type Description

Antecedent ref Reference to IANet_DiagTest

Dependent ref Reference to IANet_PhysicalEthernetAdapter

IANet_EthernetAdapter

This is an abstract base class which objectifies network characteristics of an Intel network card. The IANet_EthernetAdapter class is

inherited by IANet_LogicalEthernetAdapter and contains properties common to both virtual and physical network devices. If you

need information on teaming classes, reference IANet_LogicalEthernetAdapter.

Instances

There will be one instance for every physical Ethernet adapter and team.

Properties

Both child classes, IANet_LogicalEthernetAdapter and IANet_PhysicalEthernetAdapter support different sets of properties. There is

very little in common between them. For an accurate list of supported properties, look to these particular class definitions.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_Device802dot1QVLANServiceImplementation IANet_802dot1QVLANService

IANet_ExtendedStatus

The NCS2 WMI Provider will return additional information about errors to the user through this class.

Instances

Once an internal error has occurred, an instance of this class will be present.

Properties

Name Type Description

ClientSetHandle uint32 Client lock ID in use at time of exception.

Description string Description of the error tailored to the current locale.

File string Code file where the error was generated.

Line uint32 Line number in the code file with the error.

Operation string Operation being attempted when the error occurred.

ProviderName string Name of the provider that caused the error.

ParameterInfo string Class or attribute that was being utilized when the error occurred.

RuleFailureReasons [] string Reason for operation failure. An operation can fail because a technical rule has

failed. (e.g., you must have a management adapter in certain teams).

StatusCode uint32 Code returned from the internal call that failed:

0x80040901 "WMI: Put property failed"

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

23

0x80040902 "WMI: No class object"

0x80040903 "WMI: Failed to create class"

0x80040904 "WMI: Failed to spawn instance of class"

0x80040905 "WMI: Failed to create safe array"

0x80040906 "WMI: Failed to put safe array"

0x80040907 "WMI: Failed to return object to WMI"

0x80040908 "WMI: Get property failed"

0x80040909 "WMI: Unexpected type while getting property"

0x8004090A "WMI: Class not implemented by this provider"

0x8004090B "WMI: Unable to parse WQL statement"

0x8004090C "WMI: Provider only supports WQL"

0x8004090D "WMI: Parameter in context has the wrong type"

0x8004090E "WMI: Error formatting debug log"

0x8004090F "WMI: bad object path"

0x80040910 "WMI: Failed to update setting"

0x80040911 "WMI:[Null parameter passed to method"

0x80040912 "Setting value too small"

0x80040913 "Setting value too big"

0x80040914 "Setting not in step"

0x80040915 "String setting is too long"

0x80040916 "Setting is not one of the allowed values"

0x80040917 "WMI: Qualifier not found"

0x80040918 "WMI: Qualifier set not found"

0x80040919 "WMI: Safe array access failed"

0x8004091A "WMI: Unhandled exception"

0x8004091B "WMI: Operation is not supported for this class"

0x8004091C "WMI: Unexpected event class"

0x8004091D "WMI: Bad event data"

0x8004091E "WMI: Operation succeeded with warnings"

0x8004081F "WMI: The NCS2 Service has been stopped"

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_Device802dot1QVLANServiceImplementation IANet_802dot1QVLANService

IANet_LogicalEthernetAdapter

This class objectifies the general network characteristics of an Intel ANS team portrayed as a logical device.

Instances

For every team instance there will be one instance of this class. This class implements CIM_EthernetAdapter for a virtual team

interface.

Properties

Name Type Description

Caption string This is an inherited property; refer to parent class CIM definition.

Description string This is an inherited property; refer to parent class CIM definition.

DeviceID string This is an inherited property; refer to parent class CIM definition.

MiniPortInstance string This is an inherited property; refer to parent class CIM definition.

MiniPortName string This is an inherited property; refer to parent class CIM definition.

Name string This is an inherited property; refer to parent class CIM definition.

StatusInfo string This is an inherited property; refer to parent class CIM definition.

Caption string This is an inherited property; refer to parent class CIM definition.

All other properties are not supported.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

24

Methods

There are no supported methods

Associations

Association Class Association Partner

IANet_NetworkVirtualAdapter IANet_TeamOfAdapters

IANet_TeamToTeamSettingAssoc IANet_TeamSetting

IANet_NetService

This class enables the client to establish active sessions where changes can be made to the configuration. When requesting or

applying a client lock handle, this class must be used : it exposes two methods for performing these operations.

Instances

There is one instance of this object. The client should not rely on the key used for this class. Instead, the client should get the

instance of the class by enumerating all instances of IANet_NetService. The user cannot create or delete instances of this class.

Properties

Name Description

Version Contains the current version of the core provider

All other properties are not supported.

Methods

Method Returns Parameters Detail

BeginApply void [OUT] uint32 ClientSetHandle Used to get a Client session handle , which should be

placed in the context object in the ClientSetId qualifier.

Once called, this will, in effect, lock the software stack

until an Apply() is called.

Apply void [IN] uint32 ClientSetHandle

[OUT] uint32 FollowupAction

Applies changes made with a particular session handle

and releases the session handle after it has been used.

The uint32 argument returned is used by the provider

to tell the application the server must be rebooted

before the changes will take effect.

FollowupAction

1 (system reboot required)

0 (no reboot required)

All other methods are not supported.

IANet_NetworkVirtualAdapter

This is an association class between an instance of IANet_TeamOfAdapters and IANet_LogicalEthernetAdapter.

Instances

There will be once instance of this for every team.

Properties

Name Type Description

SameElement ref Reference to IANet_TeamOfAdapters

SystemElement ref Reference to IANet_LogicalEthernetAdapter

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

25

IANet_PhysicalEthernetAdapter

IANet_PhysicalEthernetAdapter defines the capabilities and status of all the installed Intel adapters.

Instances

Instances of this class will exist for all installed network adapters. Non-Intel network cards will be represented by an instance of this

class, although only a subset of the properties will have values; they do not support some properties specific to Intel network

drivers. The user cannot create instances of IANet_PhysicalEthernetAdapter. Each physical port will have an instance of this class.

Thus, an adapter with 4 ports will have 4 instances, each representing a distinct port on a single adapter. Deleting an instance of

IANet_PhysicalEthernetAdapter will uninstall a physical adapter; a client handle is required for this operation.

Properties

Name Type Description Values

AdapterStatus uint32 Adapter status specifies the current

status of the adapter. This value is the

sum of any of the values which apply.

Example:

 51 = 1 + 2 + 16 + 32

1 Installed

2 DriverLoaded

4 HardwareMissing

16 HasDiag

32 HasLink

1024 HasTCOEnabled

2048 DeviceError

AdditionalAvailability uint16[] This is an inherited property; refer to parent class CIM definition.

Availability uint16 This is an inherited property; refer to parent class CIM definition.

BusType uint16 Bus Type indicates the bus type. 0 Unknown

1 ISA

2 EISA

3 PCMCIA

4 Cardbus

5 PCI

6 PCI-X

7 PCI Express

Capabilities uint16[] Capabilities of the Ethernet adapter.

Some capabilities are dependent upon

feature discovery in the operating

system. Therefore, a capability may not

be present because operating system

requirements have not been met.

Capability IDs

0 Unknown

1 Other

2 AlertOnLan

3 WakeOnLan

4 Adapter Fault Tolerance

5 Adaptive Load Balancing

6 IPSec Offload

7 ASF

8 GEC/802.3ad Static Link Aggregation

9 Static Link Aggregation

10 IEEE 802.3ad Dynamic Link Aggregation

11 Checksum Offload

12 Switch Fault Tolerance

13 Basic AlertOnLan

14 AlertOnLan 2

15 Security Offload AH

16 Security Offload ESP

17 Security Payload Tunnel

18 Security Payload Transport

19 Security IPV4 Packets

20 Authentication Algorithm MD5

21 Authentication Algorithm SHA1

22 Encryption Algorithm EAS

23 Encryption Algorithm DES

28 ESP Receive Checksum Authentication

29 TCO Capability

30 Wake Up Capabilities

31 IP Checksum Offload

32 10 Mbps

33 100 Mbps

34 1000 Mbps

35 10000 Mbps

36 Teaming

37 VLAN

38 IEEE VLAN

39 ISL VLAN

40 Uninstallable

41 Identify Adapter Support

42 Cable Test Support

43 Diagnostic Support

44 Flash support

45 ICH Support

46 Usage Server

47 Vendor Intel

48 Phoneline PHY

49 Mobile

50 PowerManagement Support

51 Feature Not Supported

52 MFO

53 Pass Through

54 Quad-Port Support

55 Dedicated MAC Address

56 Jumbo Frame Support

57 Feature Not Supported

58 Signal Quality Test

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

26

24 Encryption Algorithm 3DES

25 ESP Xmit Checksum Encryption

26 ESP Xmit Checksum Authentication

27 ESP Receive Checksum Encryption

59 Cable Offline Test

60 Adapter is LOM

61 Scalable Networking Pack Capability

62 CB Platform Capability

63 iSCSI Capability

64 LinkSEC Support

Caption string This is an inherited property; refer to parent class

ControllerID uint32 The Controller ID identifies the Ethernet

controller that the adapter uses. Adapters

with different DeviceIDs can have the

same Controller ID.

0 Unknown

1 Intel 82542

3 Intel 82543

6 Intel 82544

7 Intel 82540

8 Intel 82545

11 Intel 82541

13 Intel 82547

20 Intel 82571

30 Intel 82573

31 Intel 82574

40 Intel ESB2LAN

50 Intel ICH8

51 Intel ICH9

52 Intel ICH10

60 Intel 82575

62 Intel 82576

63 Intel ADORAM_VIRTUAL

65537 Intel D100_A_STEP

65538 Intel D100_B_STEP

65539 Intel D100_C_STEP

65540 Intel D101_A_STEP

65541 Intel D101_B0_STEP

65542 Intel D101M_A_STEP

65543 Intel D101S_A_STEP

65544 Intel D102_A_STEP

65545 Intel D102_B_STEP

65546 Intel D102_C_STEP

65547 Intel D102_D_STEP

65548 Intel D102_E_STEP

65549 Intel D102_F_STEP

65550 Intel 82562_G

65551 Intel 82562_GZ

65552 Intel 82562_GX_GT

65553 Intel 82562

131073 Intel 82597 EX

196609 Intel 82598

196610 Intel 82599

Description string This is an inherited property; refer to parent class CIM definition.

DeviceID string This is an inherited property; refer to parent class CIM definition.

EEPROMVersion string EEPROM version of the device.

HardwareStatus uint32 Hardware status specifies the current

status of the hardware.
0 Unknown

1 Ready

2 Initializing

3 Reset

4 Closing

5 Not Ready

MaxSpeed uint16 This is an inherited property; refer to parent class CIM definition.

MediaType uint16 MediaType indicates the media which

interfaces to this PHY.
0 Unknown

1 Copper

2 Fiber

3 Phone Line

4 CX4 Copper

5 SFP+ Direct Attach

6 SR Fiber

7 LR Fiber

8 KX/KX4 Backplane

MiniPortInstance string This is an inherited property; refer to parent class CIM definition.

MiniPortName string This is an inherited property; refer to parent class CIM definition.

Name string This is an inherited property; refer to parent class CIM definition.

NegotiatedLinkWidth uint16 Negotiated Link Width specifies the

negotiated link width of the bus. Only

PCI-Express adapters will have a non

zero value.

0 Unknown

1 x1

2 x2

4 x4

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

27

NetworkAddresses string[] This is an inherited property; refer to parent class CIM definition.

OriginalDisplayName string If teaming is enabled on this adapter OriginalDisplayName will contain the original

display name of the adapter.

PartNumber string PartNumber is the NIC's PBA manufacturing part number.

PCIDeviceID string PCI device Id of the device.

PermanentAddress string This is an inherited property; refer to parent class CIM definition.

PortNumber uint16 PortNumber indicates the port number

on PCIe Quad port adapters. Any other

value indicates this field is not applicable

to the adapter.

0 A

1 B

2 C

3 D

SlotID string SlotID field of the System Slot structure provides a mechanism to correlate the

physical attributes of the slot to its logical access method.

Speed uint64 This is an inherited property; refer to parent class CIM definition.

Status string This is an inherited property; refer to parent class CIM definition.

StatusInfo uint16 This is an inherited property; refer to parent class CIM definition.

No other properties are supported. There are no user modifiable properties.

Methods

Method Returns Parameters Detail

GetAdapterFanStatus uint32 [OUT] uint32 dwAdapterStatus Returns status of adapter fans. Not

supported on all adapters.

GetNDISVersion uint32 [OUT] uint32

dwMajorVersion

dwMinorVersion

This method can be used to get the

NDIS version

GetPowerUsageOptions uint32 [OUT] uint32

AutoPowerSaveEnabled

ReduceSpeedOnPowerDown

SmartPowerDown

SavePowerNowEnabled

EnhancedASPMPowerSaver

ACBSMode

LinkSpeedBatterySaver

Detects any optional power usage

settings (e.g., power usage for

standby, battery operation, etc.).

For all return uint32 values:

0 = Off

1 = On

GetWakeOnLanPowerOptions uint32 [IN] uint32

WakeFromPoweroff

WakeOnLink

WakeOnMagicPacket

WakeOnDirectedPacket

GetWakeOnLanPowerOptions returns

WakeOnLan power settings. For

example, information about

wakeonlink, wakeonmagicpacket etc..

If an adapter does not support this

feature, the returned structure will be

empty.

Values to pass in:

0 = Off

1 = On

 IdentifyAdapter uint32 [IN] uint16 nSeconds Identifies adapter by flashing the light

on the adapter for a few seconds.

This method will only work for

physical adapters.

IsISCSIEnabled uint32 [OUT] uint32 iSCSIStatus This method can be used to check if

iSCSI is enabled on that adapter.

iSCSIStatus

0 – Unavailable

1 – Disabled

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

28

2 – Primary

3 - Secondary

 IsiSCSISupported uint32 [OUT] boolean

bIsiSCSIOS

bIsISCSIPatch

bIsISCSIHotFix

This method can be used to check if

iSCSI is supported by the OS and iSCSI

patch and hot fix are installed.

The “hot fix” is also known as the

Microsoft iSCSI initiator.

IsSetPowerMgmtCapabilitiesReq uint32 [OUT] boolean bIsSetRequired This method can be used to check if

SetPowerMgmt-Capabilities() needs to

be called.

SetPowerMgmtCapabilities uint32 This method is used to makes changes to the Power management

capabilities during NCS2 install so that any upgrade scenarios from earlier

releases will have the right options for all the WakeOnLan options and NCS2

will not have reinterpret them dynamically.

 SetPowerUsageOptions uint32 [IN] uint32

AutoPowerSaveModeEnabled

ReduceSpeedOnPowerDown

SmartPowerDown

SavePowerNowEnabled

EnchancedASPM-PowerSaver

ACBSMode

LinkBatterySaver

Changes power usage options (e.g.,

method can be used to reduce power

usage for standby, battery operation,

etc.) Note: Power usage settings are

stored and used for subsequent

reboots.

Values to pass in:

0 = Off

1 = On

SetWakeOnLanPowerOptions uint32 [IN] uint32

WakeFromPoweroff

WakeOnLink

WakeOnMagicPacket

WakeOnDirected-Packet

This method can be used to makes

changes to the WakeOnLan options.

For example, this method could be

used to set options like

wakefromPoweroff, wakeOnlink,

WakeOn-MagicPacket, WakeOn-

DirectedPacket etc. Note WakeOnLan

settings are stored and used for

every boot.

0 = Off

1 = On

ValidateSettingOnNewTeam Internal use only.

There are no other supported methods.

Associations

Association Class Association Partner

IANet_Device802dot1QVLANServiceImplementation IANet_802dot1QVLANService

IANet_DiagTestForMSE IANet_DiagTest

IANet_DiagResultForMSE IANet_DiagResult

IANet_DeviceBootServiceImplementation IANet_BootAgent

IANet_AdapterToSettingAssoc IANet_AdapterSetting

IANet_TeamedMemberAdapter IANet_TeamOfAdapters

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

29

IANet_Setting

This is an abstract super class for a set of concrete classes of different types. This set of classes allows open ended usage of a

variable number of settings. These will be different between adapters, teams, or VLANs and it may not always be possible to

predict what parameters are required. Between the setting categories, this class groups the most common parameters for

inheritance.

Instances

There will be one instance for every setting.

Properties

Name Type Description

Caption string This is an inherited property; refer to parent class CIM definition.

Description string This is an inherited property; refer to parent class CIM definition.

ExposeLevel uint32 Internal use only

Grouped boolean Internal use only

GroupId uint16 Internal use only

MiniHelp string Description of the setting

ParentId string The unique identifier (GUID) of the parent device

ParentType string Name of the parent (NIC, Team, VLAN)

Writable boolean Whether the value can be changed

All other properties are not supported.

Methods

There are no supported methods.

Associations

There are no associations.

IANet_TeamedMemberAdapter

This class is used to associate the adapter with the team, determine the function of the adapter in the team, and establish that the

adapter is currently active in the team. To add an adapter to a team, create an instance of IANet_TeamedMemberAdapter to

associate the adapter with the team. To remove an adapter from the team, remove the instance of IANet_ TeamedMemberAdapter.

The adapter will no longer be part of the team and may be bound to an IP protocol endpoint after the Apply() function is called.

Instances

An instance of this class exists for each adapter that is a member of a team. The user cannot create instances or delete instances of

this class.

Properties

All other properties are not supported.

Name Type Description Values

AdapterFunction uint32 Describes how the adapter is used in the team. The

AdapterFunction property of this class may be modified to

describe how the adapter is used.

0 Unknown

1 Primary Adapter

2 Secondary Adapter

3 Other

AdapterStatus uint32 Describes the adapter‟s status within the team. 0 Unknown

1 Active

2 Standby

3 InActive

GroupComponent ref Reference to IANet_TeamOfAdapters

PartComponent ref Reference to IANet_PhysicalEthernetAdapter

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

30

IANet_TeamOfAdapters

This class has members that describe the type of the team, the number of adapters in the team, and the maximum number of

adapters that can be in the team.

Instances

There is an instance of this class for each Intel adapter team. To remove a team the user should delete the instance of

IANet_TeamOfAdapters. The NCS2 WMI Provider will delete the associations to the team members, and will also delete the virtual

adapter and settings for the team.

Properties

There are no other supported properties

Methods

Method Returns Parameters Detail

CreateTeam uint32 [IN] array of ref Adapters

[IN] uint32 TeamingMode

[IN] string TeamName

[IN] boolean MFOEnable

[OUT] ref TeamPath

CreateTeam adds a new Intel NIC Team to the

system. The 1st input parameter Adapter is a

reference to an array of

IANet_PhysicalEthernetAdapter which will be

added to this team. TeamingMode is the desired

mode of the team to be created and TeamName is

the unique name to be given to the new team.

TeamingMode:

0 AFT

1 ALB

2 SLA

4 IEEE 802.3ad

5 SFT

* the array of Adapter references must contain

strings representing paths to an instance of

IANet_PhysicalEthernetAdapter.

Name Type Description Values

AdapterCount uint32 The number of adapters currently in the team.

Caption string This is an inherited property; refer to parent class CIM definition.

Description string This is an inherited property; refer to parent class CIM definition.

LoadBalancedGroup boolean This is an inherited property; refer to parent class CIM definition.

MaxAdapterCount uint32 The maximum number of adapters that can be placed in this team.

MFOEnabled boolean The MFO status in the current team.

Name string This is an inherited property; refer to parent class CIM definition.

RedundancyStatus uint16 This is an inherited property; refer to parent class CIM definition.

StaticIPAddress string The static IP address assigned to the team, otherwise this is 0.0.0.0

Status string This is an inherited property; refer to parent class CIM definition.

SubnetMask string The subnet mask assigned to the team, otherwise this is 0.0.0.0

TeamingMode * uint32 The type of the current

team.
0 AFT

1 ALB

2 SLA

4 IEEE 802.3ad

5 SFT

255 Unknown

TeamMACAddress string The configured MAC address of this team.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

31

RenameTeam uint32 [IN] string TeamName Changes the name of an existing Intel team in the

system.

TestSwitchConfiguration uint32 [out] uint16 [] CauseMessageId

[out] string [] strCause

[out] uint16 [] SolutionMessageId

[out]string [] strSolution

Tests the switch configuration to ensure that the

team is functioning correctly with the switch. This

test can be used to check that link partners i.e., a

device that an adapter links to, such as another

adapter, hub, switch, etc., support the chosen

adapter teaming mode. For example, if the

adapter is a member of a Link Aggregration team,

then this test can verify that link partners

connected to the adapter support Link

Aggregation

ValidateAddAdapters uint32 [in] [] ref:

IANet_PhysicalEthernetAdapter

Adapters

[out] uint16 ValResult

Validates the adapters which will be added to this

team. The function will return 0 in .ValResult if

the adapter can be added.

ValidateSetting uint32 [in] ref: IANet_PhysicalEthernetAdapter

Adapter

[in] string SettingName

[in] sint64 Value

[out] uint16 ValResult

Validates the member adapter setting value

before the setting is actually changed.

Associations

Association Class Association Partner

IANet_VirtualNetworkAdapter IANet_LogicalEthernetAdapter

IANet_TeamedMemberAdapter IANet_PhysicalEthernetAdapter

IANet_TeamSetting

This abstract class is used to describe a settable property in a configuration and contains an important association between an

instance of a team and an instance of a particular setting. There are several sub-classes for IANet_TeamSetting. The sub-classes

correspond to the different types and ranges of values that settings can take.

Instances

Instances of this class will exist for each setting on each Team.

Properties

See class IANet_Setting for supported properties.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_TeamToTeamSettingAssoc IANet_PhysicalEthernetAdapter

IANet_TeamSettingInt

The class models a setting that takes an integer value. There are several IANet setting classes used to model integers. The

differences between these classes concerns how the integer is displayed and modified by the GUI, and how validation is done by the

NCS2 WMI Provider. For IANet_TeamSettingInt, it is expected that the GUI will display an edit box with a spin control.

Instances

An instance of this class exists for each setting that should contain an integer value.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

32

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

base uint64 Base is the root from which an integer value may take values.

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

Scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to

measure value of the parameter.

step sint64 Granularity of the integer value.

Unsupported properties: refer to IANet_Setting

Modifiable properties : CurrentValue. Must be within the range of .min and .max.

Methods

There are no supported methods.

Associations

Inherits an association with IANet_LogicalEthernetAdapter through IANet_TeamToTeamSettingAssoc.

IANet_TeamSettingEnum

The class models an enumeration setting value. For IANet_TeamSettingEnum, it is expected that the GUI will display a list of strings

which map onto a small number of enumerated values. (e.g., a drop list combo box).

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

DescriptionMap [] string Contains what each value means

PossibleValues [] sint64 An array of possible values allowed for the Enum.

Unsupported properties: refer to IANet_Setting

Modifiable properties : CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_LogicalEthernetAdapter through IANet_TeamToTeamSettingAssoc.

IANet_TeamSettingSlider

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is expected that the GUI will

display a slider which will allow the user to choose the value in a graphical manner – the actual value chosen need not be displayed.

Instances

An instance of this class exists for each setting that will be displayed as a slider. Users can neither create nor remove instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

33

Unsupported properties: refer to IANet_Setting

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_LogicalEthernetAdapter through IANet_TeamToTeamSettingAssoc.

IANet_TeamSettingMultiSelection

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box which will allow the user to

choose any (or no) option(s).

Instances

An instance of this class exists for each setting that should be displayed as a list of options.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported properties: refer to IANet_Setting

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_LogicalEthernetAdapter through IANet_TeamToTeamSettingAssoc.

IANet_TeamSettingString

This class models a setting whereby the user can enter a free-form string value. For IANet_AdapterSettingString, it is expected

that the GUI will display an edit box.

Instances

An instance of this class exists for each setting that should be displayed as a string.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

MaxLength uint32 The maximum length of the string.

Unsupported properties: refer to IANet_Setting

Modifiable properties: CurrentValue

Methods

There are no supported methods.

Associations

Inherits an association with IANet_LogicalEthernetAdapter through IANet_TeamToTeamSettingAssoc.

IANet_TeamToTeamSettingAssoc

This is an association class between an instance of a team and a setting on that team.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

34

Instances

There will be one instance of this class for every setting on a team.

Properties

Name Type Description

Element ref Reference to IANet_LogicalEthernetAdapter

Setting ref Reference to IANet_TeamSetting

IANet_VLAN

This class holds the information for each Intel VLAN. This class implements CIM_VLAN.

Instances

An instance of this class will exist of each Intel VLAN. To create a VLAN, call CreateVLAN from the appropriate instance of

IANet_802dot1QVLANService.The user can remove an instance of this class to remove the corresponding VLAN.

Properties

Name Type Description Values

Caption string This is an inherited property; refer to parent class CIM definition.

Description string This is an inherited property; refer to parent class CIM definition.

Name string This is an inherited property; refer to parent class CIM definition.

ParentID uint16 Contains the VLAN‟s parent device ID.

ParentType uint16 Contains the VLAN‟s parent device

type.
0 Adapter

1 Team

2 Unknown

StaticIPAddress string This field has a value if the VLAN is configured to have a static IP address. Otherwise, it will

be set to 0.0.0.0

StatusInfo uint16 This is an inherited property; refer to parent class CIM definition.

SubnetMask string This field has a value if the VLAN is configured to have a subnet mask. Otherwise, it will be

set to 0.0.0.0

VLANName string This is the name of the VLAN chosen by the user.

VLANNumber uint32 This is the VLAN‟s identifying number.

No other properties are supported.

The user is able to modify the VLANNumber and Caption attribute.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_VLANToVLANSettingAssoc IANet_VLANSetting

IANet_VLANFor

This is an association class between an instance of CIM_VLAN and CIM_VLANService.

Instances

There will be one instance of this class for every VLAN.

Properties

Name Type Description

Antecedent ref Reference to CIM_VLAN

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

35

Dependent ref Reference to CIM_VLANService

IANet_VLANSetting

This abstract class is used to describe a settable property in a configuration and contains an important association between an

instance of a VLAN and an instance of a particular setting.. The class is derived from IANet_Setting. Instances of this class will exist

for each setting on each VLAN. There are several sub-classes for IANet_VLANSetting. The sub-classes correspond to the different

types and ranges of values that settings can take.

Instances

There will be one instance for every class which inherits this one; a single instance for every type of VLAN setting.

Properties

See class IANet_Setting for supported properties.

Methods

There are no supported methods.

Associations

Association Class Association Partner

IANet_AdapterToSettingAssoc IANet_PhysicalEthernetAdapter

IANet_VLANSettingInt

The class models a setting that takes an integer value. There are several IANet setting classes used to model integers. The

differences between these classes concerns how the integer is displayed and modified by the GUI, and how validation is done by the

NCS2 WMI Provider. For IANet_AdapterSettingInt, it is expected that the GUI will display an edit box with a spin control.

Instances

An instance of this class exists for each setting that should be displayed as an integer edit box. Users can neither create nor remove

instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

base uint64 Base is the root from which an integer value may take values.

max sint64 The maximum value the integer can take.

min sint64 The minimum value the integer can take.

Scale sint64 The unit of measurement to set or estimate series of marks or points at known intervals to measure value of the

parameter.

step sint64 Granularity of the integer value.

Unsupported properties: refer to IANet_Setting

Modifiable properties : CurrentValue. Must be within the range of .min and .max.

Methods

There are no supported methods.

Associations

Inherits an association with IANet_VLAN through IANet_VLANToVLANSettingAssoc.

IANet_VLANSettingEnum

The class models a enumeration setting value. For IANet_AdapterSettingEnum, it is expected that the GUI will display a list of

strings which map onto a small number of enumerated values. (e.g., a drop list combo box).

Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

36

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

DescriptionMap [] string Contains what each value means.

PossibleValues [] sint64 An array of possible values allowed for the Enum.

Unsupported properties: refer to IANet_Setting

Modifiable properties: CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_VLAN through IANet_VLANToVLANSettingAssoc.

IANet_VLANSettingSlider

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is expected that the GUI will

display a slider which will allow the user to choose the value in a graphical manner – the actual value chosen need not be displayed.

Instances

An instance of this class exists for each setting that will be displayed as a slider. Users can neither create nor remove instances.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported properties: refer to IANet_Setting

Modifiable properties : CurrentValue  PossibleValues[]

Methods

There are no supported methods.

Associations

Inherits an association with IANet_VLAN through IANet_VLANToVLANSettingAssoc.

IANet_VLANSettingMultiSelection

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box which will allow the user to

choose any (or no) option(s).

Instances

An instance of this class exists for each setting that should be displayed as a list of options.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

FirstLabel string The label that should be displayed on the left side of the slider.

LastLabel string The label that should be displayed on the right side of the slider.

PossibleValues [] sint64 The initial value of the parameter.

Unsupported properties: refer to IANet_Setting

Modifiable properties : CurrentValue

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

37

Methods

There are no supported methods.

Associations

Inherits an association with IANet_VLAN through IANet_VLANToVLANSettingAssoc.

IANet_VLANSettingString

This class models a setting whereby the user can enter a free-form string value. For IANet_VLANSettingString, it is expected that

the GUI will display an edit box.

Instances

An instance of this class exists for each setting that should be displayed as a string.

Properties

In addition to the properties supported by IANet_Setting, this class supports:

Name Type Description

MaxLength uint32 The maximum length of the string

Methods

There are no supported methods.

Associations

Inherits an association with IANet_VLAN through IANet_VLANToVLANSettingAssoc.

IANet_VLANtoVLANSettingAssoc

This is an association class between an instance of a VLAN and a setting on the VLAN.

Instances

There will be one instance of this class for every setting on a VLAN

Properties

Name Type Description

Element ref Reference to IANet_VLAN

Setting ref Reference to IANet_VLANSetting

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

38

Appendix
This section contains specific information to help users working with the NCS2 architecture.

Related Documents

 CIM schema version 2.0, 2.2 published by Distributed Management Task Force (DMTF), http://www.dmtf.org.

 Microsoft Windows Management Instrumentation (and other manageability information)

http://www.microsoft.com/hwdev/WMI/.

 Web-based Enterprise Management (WBEM) initiative by DMTF http://www.dmtf.org/wbem/index.html.

Terminology

Term Explanation

ANS Advanced Networking Services (ANS) teaming is a feature of the Intel® Advanced Networking Services component

that lets you group multiple adapters in a system into a team.

API An Application Programming Interface exposed by a library or system for service requests.

CIM Common Information Model; a standard for describing computers and services.

CIMOM CIM Object Manager; part of Windows Management.

COM Component Object Model; a Microsoft platform for inter-process communication and object creation.

DMiX Acronym for Intel® PROSet for Windows* Device Manager

DMTF Distributed Management Task Force; a standards organization for the IT industry.

GUI Graphical User Interface; refers to the user interface layer of Intel® PROSet for Windows* Device Manager

MOF Managed Object Format; a file extension of a special file format used in Windows management.

NCS2 Network Configuration Services 2.0 - the architecture used in Intel® PROSet for Windows* Device Manager

VLAN Virtual LAN; a method for creating logical networks within a physical network.

WBEM Web Based Enterprise Management; technologies to unify distributed computing environments.

WMI Windows Management Instrumentation; Microsoft‟s implementation of the CIM standard for Windows.

Working Examples

Getting Current Configuration

The client does not need to get a client handle to read the current configuration. Clients can use a NULL context, however,

any error messages will be returned in the default language for the managed machine. In the following tables, items

enclosed in { } are object paths. These paths are assumed to have been obtained from previous WQL queries. The client

should never need to construct an object path without doing a query. The __PATH attribute of every object contains the

object path for that object. In all the following use cases, the methods IWbemServices::ExecQuery or

IWbemServices::ExecQueryAsync are used to execute WQL queries.

Physical Adapters

The main class for adapters is IANet_PhysicalEthernetAdapter. This class is used for both physical and virtual adapters, and

the client needs to know how to distinguish between them.

Task WQL Query Result Class Comment

Enumerate

all adapters

SELECT * FROM

IANet_EthernetAdapter

IANet_EthernetAdapter Returns all IANet_EthernetAdapter instances.

This is equivalent to

IWbemServices::CreateInstanceEnumAsync.

Determine if

adapter is

ASSOCIATORS OF {adapter path}

WHERE AssocClass =

IANet_TeamOfAdapters If the query results in no classes then the

adapter is a real adapter.

http://www.dmtf.org/
http://www.microsoft.com/hwdev/WMI/
http://www.dmtf.org/wbem/index.html

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

39

virtual IANet_NetworkVirtualAdapter

Team Configuration

The main classes in the teaming schema are IANet_LogicalEthernetAdapter, IANet_TeamOfAdapters,

IANet_NetworkVirtualAdapter and IANet_TeamedMemberAdapter in the root\IntelNCS2 namespace. The association class

IANet_NetworkVirtualAdapter contains no useful data – clients are really only interested in the endpoints of this

association. IANet_TeamedMemberAdapter does contain useful data about how the member adapter is used within the

team.

Task WQL Queries Result Class Comments

Enumerate all

teams

SELECT * FROM

IANet_TeamOfAdapters

IANet_TeamOfAdapters There is one instance of

IANet_TeamOfAdapters for each team.

Get the

virtual

adapter for a

team

ASSOCIATORS OF

{IANet_TeamOfAdapters Path}

WHERE AssocClass =

IANet_NetworkVirtualAdapter

IANet_LogicalEthernetAdapter Returns only the adapter object for the

virtual adapter in the team. Apply must

be called before this instance will exist.

Enumerate

the team‟s

member

adapters

ASSOCIATORS OF

{IANet_TeamOfAdapters path}

WHERE AssocClass =

IANet_TeamedMemberAdapter

IANet_PhysicalEthernetAdapter Returns the adapters which are in the

team, but does not describe what role

the adapter plays.

Determine an

adapter‟s role

in a team

REFERENCES OF

{IANet_PhysicalEthernetAdapter

path} WHERE ResultClass =

IANet_TeamedMemberAdapter

IANet_TeamedMemberAdapter The class contains information about

how the member adapter relates to the

team and its current status within the

team.

VLAN Configuration

Any adapter or team supporting VLANs has an IANet_802dot1QVLANService associated with it, using the association class

IANet_Device802do1QVVLANServiceImplementation. If an adapter or team does not have an instance of this class

associated with it, then it does not support VLANs. Each VLAN is represented by an instance of IANet_VLAN in the

root\IntelNCS2 namespace. IANet_VLAN does not have a direct association – it is associated with the corresponding

IANet_802dot1QVLANService for the adapter or team. The association class IANet_VLANFor is used to associate each

VLAN instance with the correct ANet_802dot1QVLANService.

Task WQL Queries Result Class Comments

Get the 802.1q VLAN

service object associated

with an adapter

ASSOCIATORS OF

{IANet_EthernetAdapter path}

WHERE ResultClass =

IANet_802dot1QVLANService

IANet_802dot1QVLANService

Returns one or no

object(s).

Get the VLANs on an

adapter

ASSOCIATORS OF

{IANet_802dot1QVLANService path}

WHERE ResultClass = IANet_VLAN

IANet_VLAN This can return no objects

if there are no VLANs

installed.

Boot Agent Information

Each adapter that can support a boot agent in flash ROM will have an IANet_BootAgent instance associated with it using

the IANet_DeviceBootServiceImplementation association class.

Task WQL Queries Result Class Comments

Get the Boot Agent associated with an

adapter

ASSOCIATORS OF {path of

IANet_EthernetAdapter} WHERE

ResultClass = IANet_BootAgent

IANet_BootAgent The following read only

properties provide information

on the boot ROM image for this

adapter:

InvalidImageSignature, Version,

UpdateAvailable,

FlashImageType

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

40

Updating the Configuration

Client Locks

A client lock ID is used to authenticate the source of changes and to make sure two sources are not trying to make changes

at the same time. When submitting configuration requests, a sequence of smaller changes is recommended rather than

submitting all changes within a single session. For example, creating a team and then adding VLANs to the team should be

accomplished in two separate lock and apply sequences.

Obtain Lock

In most cases, to update the configuration, the client application will need to get a client handle from the IANet_NetService

class and store this handle in a WbemContext context object. The handle is simply an integer and is retrieved from the

IANet_NetService BeginApply () function. Changes to the configuration will finalized when the “Apply” method on the

IANet_NetService is called. WbemContext is a user created object which has to be customized for use with the NCS2

provider. Discussion of the WbemContext objects is located at WBEM Context. The following code sample shows how this

might be accomplished:

VBScript

Set colNetServiceObjects = mWbemServices.ExecQuery("Select * from IANet_NetService", , 16)

For Each NetServiceObject In colNetServiceObjects

 Set objReturn = NetServiceObject.ExecMethod_("BeginApply")

 If objReturn.ReturnValue = 0 Then

 iClientID = CInt(objReturn.ClientSetHandle)

 End If

Next

Commit Changes

The client ID lock cannot be simply passed into functions as an integer argument. It has to be contained within a context

qualifier. Context qualifiers are optional additional information which can be passed to WMI providers; use of this qualifier is

mandatory with the NCS2 provider. The SwbemNamedValueSet interface is used to create named value pairs; the client lock

ID is paired with the string “ClientSetId”. The following code demonstrates:

VBScript

Set oValueSet = CreateObject("WbemScripting.SWbemNamedValueSet")

oValueSet.Add "ClientSetId", iClientID

Obtain Lock

•Enumerate the single instance of IANet_NetService

•Call the BeginApply() method, obtaining the unique client lock ID

Commit Changes

• Configuration change requests are accompanied by the client lock ID

• Any number of changes can be made (fewer is recommended)

Release Lock

• Obtain the instance of IANet_NetService

• Call the Apply() method, passing the unique client lock ID

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

41

This named value set is then passed into functions which require a client ID lock. In this example, it is being used with a

request to create a team:

VBScript

Set OutParameterObj = IANet_TeamOfAdapters_Def.ExecMethod_ ("CreateTeam", InParameterObj, 0,

oValueSet)

Release Lock

Once configuration change requests are submitted, they need to be applied. The changes are not complete until the

IANet_NetService function ApplyDone () has been called. This function also requires users pass in the client lock ID but it

uses it differently than the previous example. In this case, the ClientSetHandle parameter of the Apply IN parameters is

assigned the number which was obtained from the earlier call to BeginApply ().

VBScript

Set objInParams = NetServiceObject.Methods_. Item("Apply").InParameters.SpawnInstance_()

objInParams.ClientSetHandle = iClientID

NetServiceObject.ExecMethod_("Apply", objInParams)

Troubleshooting

Disabled Drivers

Some device drivers may become disabled until the IANet_NetService.Apply() function is called. This is expected; Apply()

will re-enable the drivers. Typically, this is only seen during teaming changes.

Restarting the Provider

It may be necessary to restart the NCS2 provider if a mistake is made in locking and unlocking the software stack. Normally,

the provider will time out in a few minutes, allowing users to resume troubleshooting of scripts and programs. To avoid this

timeout, the NCS2 provider can be directly restarted by ending the NCS2Prov.exe process then restarting the WMI Service

in the operating system. Use of this option should always be a last resort and unexpected consequences in the software

may occur if the provider is shut down during an operation.

Changing Settings

To change an adapter, VLAN or team setting, the client must first get the object path of the setting that it will change. This

is best done by enumerating the settings on the object and storing the __PATH attribute of the setting.

How to change a setting:

 Get an instance of the setting to be modified

 Obtain a client software ID lock by calling IANet_NetService.BeginApply().

 Create a context qualifier and set the client ID lock value. See the section above on Client Locks.

 Modify the „CurrentValue‟ parameter of the setting object to the new value for the setting.

 Call IWbemServices::PutInstance() to pass the modified instance back to the NCS2 WMI provider. PutInstance

must be called with the flag WBEM_FLAG_UPDATE_ONLY. The context qualifier must be passed in as well.

 The NCS2 provider will validate CurrentValue and return 0 if the operation succeeded. An instance of

IANet_ExtendedStatus will be available if there were any errors.

 Release the client software ID lock by calling IANet_NetService. Apply()

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

42

Troubleshooting Setting Changes

Failed setting changes can occur for several reasons. There are certain rules about what values a setting can have, often

enforced by other parameters in the class. A few of the reasons for typical failures are:

 The integer setting value was less than the minimum allowed

 The integer setting value was greater than the maximum allowed

 The integer setting value is not one of the allowable steps

 The length of the string setting is bigger than the maximum allowed

 The length of the string is smaller than the minimum allowed

 The setting value is not one of the allowable values

 A string requires special formatting, such as that seen in IP addresses (“x.x.x.x”)

 A string may contain invalid characters

 An IP address is invalid

Working with Teams

Adapter teams can be created by utilizing classes and methods in the root\IntelNCS2 namespace: Teams can be created

through the IANet_TeamOfAdapters.CreateTeam() function. Like all configuration changes, team creation requires a client

ID lock to be in place.

Steps to create a team

 Create an instance of the IN parameters for the CreateTeam() function. This can be accomplished by obtaining

a definition of the IANet_TeamOfAdapters class and calling using IWbemServices::SpawnInstance().

 The IN parameters object will contain 4 fields which need to be filled out:

 Set .Adapters to an array of IANet_PhysicalEthernetAdapter paths; these are the adapters which will

be teamed.

 Set .TeamingMode to an integer corresponding to the type of team which will be created.

 Set .TeamName to the name of the team

 Set .MFOEnable to false. MFO is manageability failover and only needs to be set true with

manageability adapters and environments supporting this feature.

 Obtain a client software ID lock by calling IANet_NetService.BeginApply()

 Create a context qualifier and set the client ID lock value. See the section above on Client Locks.

 Invoke the CreateTeam() method of the IANet_TeamOfAdapters class, passing in the context qualifier.

 The NCS2 Provider will validate the candidate adapters and team mode. It will return 0 if the operation

succeeded. An instance of IANet_ExtendedStatus will be available if there were any errors.

 Release the client software ID lock by calling IANet_NetService. Apply()

Troubleshooting Team Creation

Teams have certain rules around team types and membership which are enforced by all team creation requests.

Documentation for Intel® PROSet for Windows* Device Manager contains these restrictions.

 The adapter may already be part of another team

 Teaming membership rules have not been followed

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

43

Modifying Teams

Teams and their membership can be modified through the WMI interface of the NCS2 provider. There isn‟t a method

available for performing these actions; the user can directly manipulate instances to effect configuration changes. The

required steps are outlined below.

Adding an adapter to a team

 Create an instance of IANet_TeamedMemberAdapter (i.e., use IWbemServices::GetObject() to get a class object

for IANet_TeamedMemberAdapter, and then use IWbemServices::SpawnInstance() to create an instance of this

object).

 The following properties in the object must be set:

 GroupComponent must be set to be the full object path of the IANet_TeamOfAdapter which the

adapter is to be added

 PartComponent must be set to be the full object path of the IANet_EthernetAdapter that is to be

added to the team.

 Set priority of the adapter in the team (optional)

 Obtain a client software ID lock by calling IANet_NetService.BeginApply()

 Create a context qualifier and set the client ID lock value. See the section above on Client Locks.

 Finally, call IWbemServices::PutInstance() to add the adapter to the team, passing the flag

WBEM_FLAG_CREATE_ONLY. If this action fails, check IANet_ExtendedStatus for the error code.

 Release the client software ID lock by calling IANet_NetService. Apply()

Removing an adapter from a team (abbreviated steps)

 Obtain a client software ID lock by calling IANet_NetService.BeginApply()

 Delete the IANet_TeamedMemberAdapter instance that associates the adapter to the team using

IWbemServices::DeleteInstance(). If this action fails, check IANet_ExtendedStatus for the error code.

 Release the client software ID lock by calling IANet_NetService. Apply()

Deleting a team (abbreviated steps)

 Obtain a client software ID lock by calling IANet_NetService.BeginApply()

 To delete a team, delete the IANet_TeamOfAdapters instance using IWbemServices::DeleteInstance(). If this

action fails, check IANet_ExtendedStatus to get the error code.

 Release the client software ID lock by calling IANet_NetService. Apply()

Changing team type (abbreviated steps)

 Manipulate the IANet_TeamOfAdapters.TeamMode parameter. This will require obtaining and releasing a client

software ID lock.

Changing adapter priority (abbreviated steps)

 Manipulate the IANet_TeamedMemberAdapter.AdapterFunction parameter. This will require obtaining and

releasing a client software ID lock.

Working with VLANs

VLANs can be added, removed, and modified through the NCS2 provider. The steps for performing these actions are

detailed below. VLANs can be added and removed from teams and adapters.

Steps to create a VLAN

 Create an instance of the IN parameters for the CreateVLAN () function. This can be accomplished by obtaining

a definition of the IANet_802dot1QVLANService class and calling using IWbemServices::SpawnInstance(). For

this step, it is easier to work with the instance of IANet_802dot1QVLANService that associates to the device

to receive the VLAN.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

44

 The IN parameters object will contain two fields which need to be filled out:

 Set .VLANNumber to number of the VLAN. (Range 1- 4094) Untagged VLANs use the number 0.

 Set .Name to user defined name to identify the VLAN.

 Obtain a client software ID lock by calling IANet_NetService.BeginApply()

 Create a context qualifier and set the client ID lock value. See the section above on Client Locks.

 Call the CreateVLAN method on the IANet_802dot1QVLANService for the device (adapter or team) to which

the VLAN is to be added.

 The function will return the object path of the newly created VLAN in the out parameter. If this action fails,

check IANet_ExtendedStatus for the error code.

 Release the client software ID lock by calling IANet_NetService. Apply()

Steps to delete a VLAN (abbreviated steps)

 Obtain a client software ID lock by calling IANet_NetService.BeginApply()

 Call IWbemServices::DeleteInstance passing the object path of the VLAN to delete.

 Release the client software ID lock by calling IANet_NetService. Apply()

Troubleshooting VLANs

VLANs also have certain rules around how they are created and where they can exist. Fortunately, they are very simple:

 The VLAN ID must be in the range of 1-4094

 When creating an untagged VLAN (ID 0), a tagged VLAN must first exist.

 An untagged VLAN cannot exist without a tagged VLAN on a device. Removing the last tagged VLAN will also

remove the untagged VLAN.

Running Diagnostics

Diagnostics can be executed through the NCS2 provider and the results retrieved after execution. The class IANet_DiagTest

is used for this purpose and its method, RunTest () facilitates diagnostic requests. Client software ID locks are not required

for diagnostic execution – these steps have intentionally been left out of the following instructions.

Steps to run a diagnostic

 Identify an instance of IANet_DiagTest which represents both the diagnostic to be executed and the adapter

on which it is to run.

 Create an instance of the IN parameters for the RunTest() function.

 The IN parameters must be populated with the following:

 The .Setting receives a reference to an instance of IANet_DiagSetting whose .Setting ID represents

the desired <ID>@<GUID> test.

 The .SystemElement receives a reference to an instance of IANet_PhysicalEthernetAdapter which

corresponds to the particular diagnostic under test. Assign the object‟s path to this parameter.

 Execute the RunTest() method.

 Examine instances of IANet_DiagResult to find results.

Troubleshooting Diagnostics

Getting the correct object paths for each diagnostic can be complicated. They key piece of information that ties them all

together is the {GUID}, a long number that uniquely identifies each device. When working with diagnostics, this number is

very important to getting the correct object instances. The following table provides some hints on how this number can be

used across classes.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

45

Hint Value Use

IANet_DiagTest.Name 1@{1F770A4C-B9DB-4174-9FD3-

0BF520C3CB73}

Use the .RunTest() of this instance

IANet_PhysicalEthernetAdapter.DeviceID {1F770A4C-B9DB-4174- 9FD3-

0BF520C3CB73}

Assign the .Path of this object to the RunTest()

IN parameter .SystemElement.

IANet_DiagSetting.SettingID 1@{1F770A4C-B9DB-4174-9FD3-

0BF520C3CB73}

Assign the .Path of this object to the RunTest()

IN parameter .Setting

The association classes for IANet_DiagTest can also help locate the correct instances of the classes above.

IANet_DiagTestForMSE associates to an instance of IANet_PhysicalEthernetAdapter and IANet_DiagSettingForTest

associates to an instance of IANet_DiagSetting. Using this association can take a lot of the guesswork out of obtaining the

correct references.

Getting Diagnostic Results

Diagnostic results can be enumerated any time a diagnostic test has been executed. Since the NCS2 provider does not store

results permanently, the results are only available as long as the provider is running. If it has become idle for too long, it will

unload and erase any existing results.

Diagnostic Names

The name of a diagnostic result will be contained in the .DiagnosticName parameter for a class instance of

IANet_DiagResult. It is a concatenation of the diagnostic ID, the “@” symbol, and the unique identifier of the adapter for

which it was executed. The IANet_DiagResultForMSE association class can also be used to find all results for a particular

adapter. For most instances, the results of the test will be contained in the .Result parameter.

Packages

The results of some diagnostic tests may be contained in a package. This is a logical grouping of a parent test result and any

additional result instances which apply to it. Thus it is possible to have one main result for a test and a one or more results

which provide additional results. Packages can be recognized in a few ways:

 Results in a package will have a sub-index in the diagnostics ID for the DiagnosticName parameter of the class

instance.

 The parent result will have its IsPackage parameter set to “Yes” and will have a IANet_DiagResultInPackage

association to any packaged results.

Type DiagnosticName IsPackage

Parent Result 37@{66DFCDDC-A535-4265-99CB-21B03561497A} Yes

Packaged Result 37.1@{66DFCDDC-A535-4265-99CB-21B03561497A}

Packaged Result 37.2@{66DFCDDC-A535-4265-99CB-21B03561497A}

Packaged Result 37.3@{66DFCDDC-A535-4265-99CB-21B03561497A}

Packaged Result 37.4@{66DFCDDC-A535-4265-99CB-21B03561497A}

Packaged Result 37.5@{66DFCDDC-A535-4265-99CB-21B03561497A}

iSCSI Settings

The iSCSI settings of an Intel network card can be manipulated through the WMI interface. Only operating systems which

support iSCSI will have these settings available. Working with iSCSI configurations requires additional information which is

not readily available in the class descriptions.

Getting iSCSI Status

To retrieve the iSCSI status of a network card, enumerate instances of the IANet_BootAgent_iSCSI_Adapters class. In this

class, look at the iSCSI_Status parameter. This will indicate the current state of an iSCSI enabled adapter.

Setting iSCSI Status

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

46

The iSCSI state of the adapter is manipulated through the SetiSCSI_Status method of the IANet_BootAgent_iSCSI_Adapters

class. This only controls whether the adapter can be set to a Primary, Secondary or Disabled state.

Manipulating iSCSI Parameters

There are several settings applicable to iSCSI which can be manipulated through WMI. To locate these parameters, use the

table below to find the name of the class, the type of parameter, and guidelines for setting them. Each iSCSI enabled

adapter will have its own settings.

Setting Caption Class Notes

Authentication IANet_BootAgentSettingEnum 0 (Disable CHAP) or 1 (Enable CHAP)

BootLUN IANet_BootAgentSettingInt The iSCSI Boot LUN

ChapPassword IANet_BootAgentSettingString A string value no longer than 16 characters

ChapUserName IANet_BootAgentSettingString A string value no longer than 16 characters

CrashDump IANet_BootAgentSettingEnum 0 (Disable) or 1 (Enable)

InitiatorDHCP IANet_BootAgentSettingEnum This requires an string formatted as an IP address

InitiatorGateway IANet_BootAgentSettingString This requires an string formatted as an IP address

InitiatorIPAddress IANet_BootAgentSettingString This requires an string formatted as an IP address

InitiatorName IANet_BootAgentSettingString A string value no longer than 255 characters

InitiatorSubnetMask IANet_BootAgentSettingString This requires an string formatted as an IP address

TargetDHCP IANet_BootAgentSettingEnum This requires an string formatted as an IP address

TargetIPAddress IANet_BootAgentSettingString This requires an string formatted as an IP address

TargetName IANet_BootAgentSettingString A string value no longer than 255 characters

TargetPort IANet_BootAgentSettingInt An integer between 0 and 65535

TargetSecret IANet_BootAgentSettingString A string between 12 – 255 characters.

Some parameters which contain security information will be intentionally obscured upon reading their value. Examples are

passwords where the user will only see “*” characters for values.

White Paper - Intel PROSet for Windows* Device Manager WMI User‟s Guide

47

Errata

The following is information which may be relevant to viewing or changing a configuration in Intel® PROSet for Windows*

Device Manager. It is supplied as a supplement and, in some cases, troubleshooting guide.

Phantom Adapters

When enumerating instances of IANet_PhysicalEthernetAdapter, all installed adapters will be returned whether or not the

hardware is actually present. This only occurs when an adapter is installed and then physically removed or replaced by

another adapter without first removing its driver. Queries of IANet_PhysicalEthernetAdapter can be modified to filter out

these „phantom‟ instances.

Amended query:

Select * from IANet_PhysicalEthernetAdapter WHERE StatusInfo = '3'

Permissions

Interaction with the NCS2 provider requires Administrator rights on the operating system. This applies to local and remote

access. Windows* Vista may require elevated Administrator rights. These can be obtained by logging in as the Administrator

and elevating permissions. Failure to work in an elevated environment may result in failure to obtain and apply client

software locks. Intel® PROSet for Windows* Device Manager automatically elevates permissions when it runs in user

interface mode.

Diagnostic Results Timeout

The NCS2 provider will automatically terminate within a few minutes of not being used. When this event occurs, all

diagnostic results will be lost.

Remote Desktop Limitations

When connecting to a computer remotely with Remote Desktop Protocol and no Administrator locally logged in, use the

“/console” option. The other workaround is to make sure a local Administrator account is logged in when initiating remote

desktop access. This makes sure the WMI layer can authenticate with the local permissions.

Win32_Product

The Uninstall () method of the Win32_Product class cannot be used to uninstall Intel® PROSet for Windows* Device Manager.

Attempting this operation will result in a corrupted installation and, possibly, the need for manual software removal.

Function Return Values

Functions exposed in classes supported by the NCS2 provider will return the value 0 to indicate success. If the function call

failed, nothing will be returned. A return value of 0 will only indicate the function was successfully called. It does not

validate the final configuration requested by the user. In most cases, a successful function call can be trusted to perform

the expected changes. However, it may be necessary to verify those changes before performing further operations.

Passing Client ID Locks in C#

When using client ID locks in C#, the lock number must be cast to type int before it is used. This is due to a mismatch

between how numbers are treated as data types between WMI, C#, and the NCS2 provider. Attempting to pass the ID

without casting it first will result in a failed change request.

C#

outParams = netService.InvokeMethod("BeginApply", null, null);

result = (uint)outParams["ReturnValue"];

clientHandle = (uint)outParams["ClientSetHandle"];

g_SValueSet.Add("ClientSetId", (int)clientHandle);

